Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(12): e0261754, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34941944

RESUMO

CRISPR multiplex gRNA systems have been employed in genome engineering in various industrially relevant yeast species. The thermotolerant methylotrophic yeast Ogataea thermomethanolica TBRC 656 is an alternative host for heterologous protein production. However, the limited secretory capability of this yeast is a bottleneck for protein production. Here, we refined CRISPR-based genome engineering tools for simultaneous mutagenesis and activation of multiple protein secretory pathway genes to improve heterologous protein secretion. We demonstrated that multiplexed CRISPR-Cas9 mutation of up to four genes (SOD1, VPS1, YPT7 and YPT35) in one single cell is practicable. We also developed a multiplexed CRISPR-dCas9 system which allows simultaneous activation of multiple genes in this yeast. 27 multiplexed gRNA combinations were tested for activation of three genes (SOD1, VPS1 and YPT7), three of which were demonstrated to increase the secretion of fungal xylanase and phytase up to 29% and 41%, respectively. Altogether, our study provided a toolkit for mutagenesis and activation of multiple genes in O. thermomethanolica, which could be useful for future strain engineering to improve heterologous protein production in this yeast.


Assuntos
6-Fitase , Sistemas CRISPR-Cas , Endo-1,4-beta-Xilanases , Proteínas Fúngicas , Microrganismos Geneticamente Modificados , Saccharomycetales , Via Secretória , 6-Fitase/genética , 6-Fitase/metabolismo , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Saccharomycetales/enzimologia , Saccharomycetales/genética
2.
Int J Food Microbiol ; 354: 109330, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34303961

RESUMO

A PCR-based DNA walking analysis was performed on a protease product suspected to contain a new unauthorized genetically modified microorganism (GMM). Though the characterization of unnatural associations of sequences between the pUB110 shuttle vector and a Bacillus amyloliquefaciens gene coding for a protease, the presence of the GMM was shown. Based on these sequences of interest, a real-time PCR marker was developed to target specifically the newly discovered GMM, namely GMM protease2. The performance of the real-time PCR marker was assessed in terms of specificity and sensitivity. The applicability of the real-time PCR GMM protease2 marker was also demonstrated on microbial fermentation products. To confirm its use by other GMO enforcement laboratories, the transferability of the in-house validated real-time PCR marker was demonstrated by assays performed by an external laboratory.


Assuntos
Marcadores Genéticos , Técnicas Microbiológicas , Microrganismos Geneticamente Modificados , Peptídeo Hidrolases , Reação em Cadeia da Polimerase em Tempo Real , Marcadores Genéticos/genética , Técnicas Microbiológicas/métodos , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/normas , Análise de Sequência de DNA
3.
Molecules ; 26(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206459

RESUMO

3,4-dihydroxyphenyl-L-alanine (L-DOPA) is a preferred drug for Parkinson's disease, with an increasing demand worldwide that mainly relies on costly and environmentally problematic chemical synthesis. Yet, biological L-DOPA production is unfeasible at the industrial scale due to its low L-DOPA yield and high production cost. In this study, low-cost Halomonas bluephagenesis TD01 was engineered to produce tyrosinase TyrVs-immobilized polyhydroxyalkanoate (PHA) nanogranules in vivo, with the improved PHA content and increased immobilization efficiency of TyrVs accounting for 6.85% on the surface of PHA. A higher L-DOPA-forming monophenolase activity of 518.87 U/g PHA granules and an L-DOPA concentration of 974.36 mg/L in 3 h catalysis were achieved, compared to those of E. coli. Together with the result of L-DOPA production directly by cell lysates containing PHA-TyrVs nanogranules, our study demonstrated the robust and cost-effective production of L-DOPA by H. bluephagenesis, further contributing to its low-cost industrial production based on next-generation industrial biotechnology (NGIB).


Assuntos
Proteínas de Bactérias , Enzimas Imobilizadas , Halomonas , Levodopa/biossíntese , Microrganismos Geneticamente Modificados , Monofenol Mono-Oxigenase , Nanopartículas , Poli-Hidroxialcanoatos , Verrucomicrobia/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Enzimas Imobilizadas/biossíntese , Enzimas Imobilizadas/genética , Halomonas/enzimologia , Halomonas/genética , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Monofenol Mono-Oxigenase/biossíntese , Monofenol Mono-Oxigenase/genética , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/genética , Verrucomicrobia/enzimologia
4.
PLoS One ; 16(3): e0247135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33661900

RESUMO

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) genes play important roles in CO2 fixation and redox balancing in photosynthetic bacteria. In the present study, the kefir yeast Kluyveromyces marxianus 4G5 was used as host for the transformation of form I and form II RubisCO genes derived from the nonsulfur purple bacterium Rhodopseudomonas palustris using the Promoter-based Gene Assembly and Simultaneous Overexpression (PGASO) method. Hungateiclostridium thermocellum ATCC 27405, a well-known bacterium for its efficient solubilization of recalcitrant lignocellulosic biomass, was used to degrade Napier grass and rice straw to generate soluble fermentable sugars. The resultant Napier grass and rice straw broths were used as growth media for the engineered K. marxianus. In the dual microbial system, H. thermocellum degraded the biomass feedstock to produce both C5 and C6 sugars. As the bacterium only used hexose sugars, the remaining pentose sugars could be metabolized by K. marxianus to produce ethanol. The transformant RubisCO K. marxianus strains grew well in hydrolyzed Napier grass and rice straw broths and produced bioethanol more efficiently than the wild type. Therefore, these engineered K. marxianus strains could be used with H. thermocellum in a bacterium-yeast coculture system for ethanol production directly from biomass feedstocks.


Assuntos
Proteínas de Bactérias , Clostridiales/crescimento & desenvolvimento , Etanol/metabolismo , Kluyveromyces , Microrganismos Geneticamente Modificados , Rodopseudomonas/genética , Ribulose-Bifosfato Carboxilase , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Kluyveromyces/enzimologia , Kluyveromyces/genética , Kluyveromyces/crescimento & desenvolvimento , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/crescimento & desenvolvimento , Rodopseudomonas/enzimologia , Ribulose-Bifosfato Carboxilase/biossíntese , Ribulose-Bifosfato Carboxilase/genética
5.
Biochim Biophys Acta Bioenerg ; 1862(4): 148378, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33460587

RESUMO

ATP synthases are the key elements of cellular bioenergetics and present in any life form and the overall structure and function of this rotary energy converter is conserved in all domains of life. However, ancestral microbes, the archaea, have a unique and huge diversity in the size and number of ion-binding sites in their membrane-embedded rotor subunit c. Due to the harsh conditions for ATP synthesis in these life forms it has never been possible to address the consequences of these unusual c subunits for ATP synthesis. Recently, we have found a Na+-dependent archaeal ATP synthase with a V-type c subunit in a mesophilic bacterium and here, we have cloned and expressed the genes in the ATP synthase-negative strain Escherichia coli DK8. The enzyme was present in membranes of E. coli DK8 and catalyzed ATP hydrolysis with a rate of 35 nmol·min-1·mg protein-1. Inverted membrane vesicles of this strain were then checked for their ability to synthesize ATP. Indeed, ATP was synthesized driven by NADH oxidation despite the V-type c subunit. ATP synthesis was dependent on Na+ and inhibited by ionophores. Most importantly, ATPase activity was inhibited by DCCD and this inhibition was relieved by addition of Na+, indicating a functional coupling of the F1 and FO domains, a prerequisite for studies on structure-function relationship. A first step in this direction was the exchange of a conserved arginine (Arg530) in the FO motor subunit a which led to loss of ATP synthesis whereas ATP hydrolysis was retained.


Assuntos
Complexos de ATP Sintetase , Archaea/enzimologia , Proteínas Arqueais , Proteínas de Bactérias , Escherichia coli , Eubacterium/genética , Microrganismos Geneticamente Modificados , Complexos de ATP Sintetase/genética , Complexos de ATP Sintetase/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Archaea/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Eubacterium/enzimologia , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética
6.
Appl Biochem Biotechnol ; 193(2): 377-388, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33006017

RESUMO

One of the reasons hindering large-scale application of sophorolipids (SLs) is high production cost. In this study, six recombinant strains of Starmerella bombicola, sbEG1, sbEG2, sbCBH1, sbCBH1-2, sbBGL1, and sbCBH2 expressing cellulase genes eg1, eg2, cbh, cbh1-2, bgl1, and cbh2 from Penicillium oxalicum were respectively constructed. Four strains showed cellulase activities and were co-cultivated in fermentation media containing 2% glucose, 1% Regenerated Amorphous Cellulose (RAC), 2% glucose, and 1% RAC, respectively. After 7 days' cultivation, concentration of SLs in medium with 1% RAC (g/L) reached 1.879 g/L. When 2% glucose and 1% of RAC were both contained, the titer of SLs increased by 39.5% than that of control strain and increased by 68.8% than that in the medium with only 2% glucose. Results demonstrated that cellulase genes from filamentous fungi in S. bombicola can function to degrade lignocellulosic cellulose to produce SLs.


Assuntos
Biomassa , Celulase , Proteínas Fúngicas , Lignina/metabolismo , Microrganismos Geneticamente Modificados , Ácidos Oleicos/biossíntese , Penicillium/genética , Saccharomycetales , Celulase/biossíntese , Celulase/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Ácidos Oleicos/genética , Saccharomycetales/enzimologia , Saccharomycetales/genética
7.
Appl Environ Microbiol ; 87(1)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33097503

RESUMO

Hexachlorobenzene (HCB), as one of the persistent organic pollutants (POPs) and a possible human carcinogen, is especially resistant to biodegradation. In this study, HcbA1A3, a distinct flavin-N5-peroxide-utilizing enzyme and the sole known naturally occurring aerobic HCB dechlorinase, was biochemically characterized. Its apparent preference for HCB in binding affinity revealed that HcbA1 could oxidize only HCB rather than less-chlorinated benzenes such as pentachlorobenzene and tetrachlorobenzenes. In addition, the crystal structure of HcbA1 and its complex with flavin mononucleotide (FMN) were resolved, revealing HcbA1 to be a new member of the bacterial luciferase-like family. A much smaller substrate-binding pocket of HcbA1 than is seen with its close homologues suggests a requirement of limited space for catalysis. In the active center, Tyr362 and Asp315 are necessary in maintaining the normal conformation of HcbA1, while Arg311, Arg314, Phe10, Val59, and Met12 are pivotal for the substrate affinity. They are supposed to place HCB at a productive orientation through multiple interactions. His17, with its close contact with the site of oxidation of HCB, probably fixes the target chlorine atom and stabilizes reaction intermediates. The enzymatic characteristics and crystal structures reported here provide new insights into the substrate specificity and catalytic mechanism of HcbA1, which paves the way for its rational engineering and application in the bioremediation of HCB-polluted environments.IMPORTANCE As an endocrine disrupter and possible carcinogen to human beings, hexachlorobenzene (HCB) is especially resistant to biodegradation, largely due to difficulty in its dechlorination. The lack of knowledge of HCB dechlorinases limits their application in bioremediation. Recently, an HCB monooxygenase, HcbA1A3, representing the only naturally occurring aerobic HCB dechlorinase known so far, was reported. Here, we report its biochemical and structural characterization, providing new insights into its substrate selectivity and catalytic mechanism. This research also increases our understanding of HCB dechlorinases and flavin-N5-peroxide-utilizing enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Hexaclorobenzeno/metabolismo , Oxigenases de Função Mista/metabolismo , Nocardioides/enzimologia , Catálise , Escherichia coli/enzimologia , Microrganismos Geneticamente Modificados/enzimologia , Especificidade por Substrato
8.
Biotechnol Appl Biochem ; 67(4): 668-676, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32822096

RESUMO

Pyruvate is an important pharmaceutical intermediate and is widely used in food, nutraceuticals, and pharmaceuticals. However, high environmental pollution caused by chemical synthesis or complex separation process of microbial fermentation methods constrain the supply of pyruvate. Here, one-step pyruvate and d-alanine production from d,l-alanine by whole-cell biocatalysis was investigated. First, l-amino acid deaminase (Pm1) from Proteus mirabilis was expressed in Escherichia coli, resulting in pyruvate titer of 12.01 g/L. Then, N-terminal coding sequences were introduced to the 5'-end of the pm1 gene to enhance the expression of Pm1 and the pyruvate titer increased to 15.13 g/L. Next, product utilization by the biocatalyst was prevented by knocking out the pyruvate uptake transporters (cstA, btsT) and the pyruvate metabolic pathway genes pps, poxB, pflB, ldhA, and aceEF using CRISPR/Cas9, yielding 30.88 g/L pyruvate titer. Finally, by optimizing the reaction conditions, the pyruvate titer was further enhanced to 43.50 g/L in 8 H with a 79.99% l-alanine conversion rate; meanwhile, the resolution of d-alanine reached 84.0%. This work developed a whole-cell biocatalyst E. coli strain for high-yield, high-efficiency, and low-pollution pyruvate and d-alanine production, which has great potential for the commercial application in the future.


Assuntos
Alanina/metabolismo , Amônia-Liases , Proteínas de Bactérias , Escherichia coli , Microrganismos Geneticamente Modificados , Proteus mirabilis/genética , Ácido Pirúvico/metabolismo , Amônia-Liases/biossíntese , Amônia-Liases/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Microrganismos Geneticamente Modificados/enzimologia , Proteus mirabilis/enzimologia
9.
Appl Environ Microbiol ; 86(21)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32859593

RESUMO

Arsenate is a notorious toxicant that is known to disrupt multiple biochemical pathways. Many microorganisms have developed mechanisms to detoxify arsenate using the ArsC-type arsenate reductase, and some even use arsenate as a terminal electron acceptor for respiration involving arsenate respiratory reductase (Arr). ArsC-type reductases have been studied extensively, but the phylogenetically unrelated Arr system is less investigated and has not been characterized from Archaea Here, we heterologously expressed the genes encoding Arr from the crenarchaeon Pyrobaculum aerophilum in the euryarchaeon Pyrococcus furiosus, both of which grow optimally near 100°C. Recombinant P. furiosus was grown on molybdenum (Mo)- or tungsten (W)-containing medium, and two types of recombinant Arr enzymes were purified, one containing Mo (Arr-Mo) and one containing W (Arr-W). Purified Arr-Mo had a 140-fold higher specific activity in arsenate [As(V)] reduction than Arr-W, and Arr-Mo also reduced arsenite [As(III)]. The P. furiosus strain expressing Arr-Mo (the Arr strain) was able to use arsenate as a terminal electron acceptor during growth on peptides. In addition, the Arr strain had increased tolerance compared to that of the parent strain to arsenate and also, surprisingly, to arsenite. Compared to the parent, the Arr strain accumulated intracellularly almost an order of magnitude more arsenic when cells were grown in the presence of arsenite. X-ray absorption spectroscopy (XAS) results suggest that the Arr strain of P. furiosus improves its tolerance to arsenite by increasing production of less-toxic arsenate and nontoxic methylated arsenicals compared to that by the parent.IMPORTANCE Arsenate respiratory reductases (Arr) are much less characterized than the detoxifying arsenate reductase system. The heterologous expression and characterization of an Arr from Pyrobaculum aerophilum in Pyrococcus furiosus provides new insights into the function of this enzyme. From in vivo studies, production of Arr not only enabled P. furiosus to use arsenate [As(V)] as a terminal electron acceptor, it also provided the organism with a higher resistance to arsenate and also, surprisingly, to arsenite [As(III)]. In contrast to the tungsten-containing oxidoreductase enzymes natively produced by P. furiosus, recombinant P. aerophilum Arr was much more active with molybdenum than with tungsten. It is also, to our knowledge, the only characterized Arr to be active with both molybdenum and tungsten in the active site.


Assuntos
Proteínas Arqueais/genética , Arseniato Redutases/genética , Regulação da Expressão Gênica em Archaea , Pyrococcus furiosus/genética , Thermoproteaceae/genética , Proteínas Arqueais/metabolismo , Arseniato Redutases/metabolismo , Arsênio/metabolismo , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/metabolismo
10.
Appl Environ Microbiol ; 86(16)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32532871

RESUMO

Pectin deconstruction is the initial step in breaking the recalcitrance of plant biomass by using selected microorganisms that encode pectinolytic enzymes. Pectate lyases that cleave the α-1,4-galacturonosidic linkage of pectin are widely used in industries such as papermaking and fruit softening. However, there are few reports on pectate lyases with good thermostability. Here, two pectate lyases (CbPL3 and CbPL9) from a hyperthermophilic bacterium, Caldicellulosiruptor bescii, belonging to family 3 and family 9 polysaccharide lyases, respectively, were investigated. The biochemical properties of the two CbPLs were shown to be similar under optimized conditions of 80°C to 85°C and pH 8 to 9. However, the degradation products from pectin and polygalacturonic acids (pGAs) were different. A family 66 carbohydrate-binding module (CbCBM66) located in the N terminus of the two CbPLs shares 100% amino acid identity. A CbCBM66-truncated mutant of CbPL9 showed lower activities than the wild type, whereas CbPL3 with a CbCBM66 knockout portion was reported to have enhanced activities, thereby revealing the different effect of CbCBM66. Prediction by the I-TASSER server revealed that CbCBM66 is structurally close to BsCBM66 from Bacillus subtilis; however, the COFACTOR and COACH programs indicated that the substrate-binding sites between CbCBM66 and BsCBM66 are different. Furthermore, a substrate-binding assay indicated that the catalytic domains in the two CbPLs had strong affinities for pectate-related substrates, but CbCBM66 showed a weak interaction with a number of lignocellulosic carbohydrates. Finally, scanning electron microscopy (SEM) analysis and a total reducing sugar assay showed that the two enzymes could improve the saccharification of switchgrass. The two CbPLs are impressive sources for the degradation of plant biomass.IMPORTANCE Thermophilic proteins could be implemented in diverse industrial applications. We sought to characterize two pectate lyases, CbPL3 and CbPL9, from a thermophilic bacterium, Caldicellulosiruptor bescii The two enzymes share a high optimum temperature, a low optimum pH, and good thermostability at the evaluated temperature. A family 66 carbohydrate-binding module (CbCBM66) was identified in the two CbPLs, sharing 100% amino acid identity. The deletion of CbCBM66 dramatically decreased the activity of CbPL9 but increased the activity and thermostability of CbPL3, suggesting different roles of CbCBM66 in the two enzymes. Moreover, the degradation products of the two CbPLs were different. These results revealed that these enzymes could represent potential pectate lyases for applications in the paper and textile industries.


Assuntos
Proteínas de Bactérias/genética , Firmicutes/genética , Pectinas/metabolismo , Polissacarídeo-Liases/genética , Proteínas de Bactérias/metabolismo , Biomassa , Caldicellulosiruptor , Escherichia coli/enzimologia , Escherichia coli/genética , Firmicutes/enzimologia , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Polissacarídeo-Liases/metabolismo
11.
Sci Rep ; 10(1): 7094, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32341433

RESUMO

Recently, the unexpected presence of a viable unauthorized genetically modified bacterium in a commercialized food enzyme (protease) product originating from a microbial fermentation process has been notified at the European level (RASFF 2019.3332). This finding was made possible thanks to the use of the next-generation sequencing technology, as reported in this study. Whole-genome sequencing was used to characterize the genetic modification comprising a sequence from the pUB110 shuttle vector (GenBank: M19465.1), harbouring antimicrobial resistance genes conferring a resistance to kanamycine, neomycin and bleomycin, flanked on each side by a sequence coding for a protease (GenBank: WP_032874795.1). In addition, based on these data, two real-time PCR methods, that can be used by enforcement laboratories, specific to this unauthorized genetically modified bacterium were developed and validated. The present study emphasizes the key role that whole-genome sequencing can take for detection of unknown and unauthorized genetically modified microorganisms in commercialized microbial fermentation products intended for the food and feed chain. Moreover, current issues encountered by the Competent Authorities and enforcement laboratories with such unexpected contaminations and the importance of performing official controls were highlighted.


Assuntos
Farmacorresistência Bacteriana/genética , Microbiologia de Alimentos , Microrganismos Geneticamente Modificados , Peptídeo Hidrolases , Sequenciamento Completo do Genoma , Vetores Genéticos/genética , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo
12.
Appl Environ Microbiol ; 86(12)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32276977

RESUMO

Biotin, an important cofactor for carboxylases, is essential for all kingdoms of life. Since native biotin synthesis does not always suffice for fast growth and product formation, microbial cultivation in research and industry often requires supplementation of biotin. De novo biotin biosynthesis in yeasts is not fully understood, which hinders attempts to optimize the pathway in these industrially relevant microorganisms. Previous work based on laboratory evolution of Saccharomyces cerevisiae for biotin prototrophy identified Bio1, whose catalytic function remains unresolved, as a bottleneck in biotin synthesis. This study aimed at eliminating this bottleneck in the S. cerevisiae laboratory strain CEN.PK113-7D. A screening of 35 Saccharomycotina yeasts identified six species that grew fast without biotin supplementation. Overexpression of the S. cerevisiaeBIO1 (ScBIO1) ortholog isolated from one of these biotin prototrophs, Cyberlindnera fabianii, enabled fast growth of strain CEN.PK113-7D in biotin-free medium. Similar results were obtained by single overexpression of C. fabianii BIO1 (CfBIO1) in other laboratory and industrial S. cerevisiae strains. However, biotin prototrophy was restricted to aerobic conditions, probably reflecting the involvement of oxygen in the reaction catalyzed by the putative oxidoreductase CfBio1. In aerobic cultures on biotin-free medium, S. cerevisiae strains expressing CfBio1 showed a decreased susceptibility to contamination by biotin-auxotrophic S. cerevisiae This study illustrates how the vast Saccharomycotina genomic resources may be used to improve physiological characteristics of industrially relevant S. cerevisiaeIMPORTANCE The reported metabolic engineering strategy to enable optimal growth in the absence of biotin is of direct relevance for large-scale industrial applications of S. cerevisiae Important benefits of biotin prototrophy include cost reduction during the preparation of chemically defined industrial growth media as well as a lower susceptibility of biotin-prototrophic strains to contamination by auxotrophic microorganisms. The observed oxygen dependency of biotin synthesis by the engineered strains is relevant for further studies on the elucidation of fungal biotin biosynthesis pathways.


Assuntos
Biotina/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Ascomicetos/enzimologia , Ascomicetos/genética , Engenharia Metabólica , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Leveduras/enzimologia , Leveduras/genética
13.
Bioprocess Biosyst Eng ; 43(5): 909-918, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31989256

RESUMO

Bacteria have evolved a defense system to resist external stressors, such as heat, pH, and salt, so as to facilitate survival in changing or harsh environments. However, the specific mechanisms by which bacteria respond to such environmental changes are not completely elucidated. Here, we used halotolerant bacteria as a model to understand the mechanism conferring high tolerance to NaCl. We screened for genes related to halotolerance in Halomonas socia, which can provide guidance for practical application. Phospholipid fatty acid analysis showed that H. socia cultured under high osmotic pressure produced a high portion of cyclopropane fatty acid derivatives, encoded by the cyclopropane-fatty acid-acyl phospholipid synthase gene (cfa). Therefore, H. socia cfa was cloned and introduced into Escherichia coli for expression. The cfa-overexpressing E. coli strain showed better growth, compared with the control strain under normal cultivation condition as well as under osmotic pressure (> 3% salinity). Moreover, the cfa-overexpressing E. coli strain showed 1.58-, 1.78-, 3.3-, and 2.19-fold higher growth than the control strain in the presence of the inhibitors furfural, 4-hydroxybenzaldehyde, vanillin, and acetate from lignocellulosic biomass pretreatment, respectively. From a practical application perspective, cfa was co-expressed in E. coli with the polyhydroxyalkanoate (PHA) synthetic operon of Ralstonia eutropha using synthetic and biosugar media, resulting in a 1.5-fold higher in PHA production than that of the control strain. Overall, this study demonstrates the potential of the cfa gene to boost cell growth and production even in heterologous strains under stress conditions.


Assuntos
Proteínas de Bactérias , Escherichia coli , Expressão Gênica , Metiltransferases , Microrganismos Geneticamente Modificados , Pressão Osmótica/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Cupriavidus necator/enzimologia , Cupriavidus necator/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Halomonas/enzimologia , Halomonas/genética , Metiltransferases/biossíntese , Metiltransferases/genética , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
14.
Metab Eng ; 55: 231-238, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31382013

RESUMO

As an alternative to in vitro lipase dependent biotransformation and to traditional assembly of pathways in cytoplasm, the present study focused on targeting lipase dependent pathways to a subcellular compartment lipid body (LB), in combination with compartmentalization of associated pathways in other lipid relevant organelles including endoplasmic reticulum (ER) and peroxisome for efficient in vivo biosynthesis of fatty acid methyl esters (FAMEs) and hydrocarbons, in the context of improving Yarrowia lipolytica lipid pool. Through knock in and knock out of key genes involved in triacylglycerols (TAGs) biosynthesis and degradation, the TAGs content was increased to 51.5%, from 7.2% in parent strain. Targeting lipase dependent pathway to LB gave a 10-fold higher FAMEs titer (1028.0 mg/L) compared to cytosolic pathway (102.8 mg/L). Furthermore, simultaneously targeting lipase dependent pathway to LB, ER and peroxisome gave rise to the highest FAMEs titer (1644.8 mg/L). The subcellular compartment engineering strategy was extended to other lipase dependent pathways for fatty alkene and alkane biosynthesis, which resulted in a 14-fold titer enhancement compared to traditional cytosolic pathways. We developed yeast subcellular cell factories by directing lipase dependent pathways towards the TAGs storage organelle LB for efficient biosynthesis of TAG derived chemicals for the first time. The successful exploration of targeting metabolic pathways towards LB centered organelles is expected to promote subcellular compartment engineering for other lipid derived product biosynthesis.


Assuntos
Proteínas Fúngicas , Lipase , Engenharia Metabólica , Microrganismos Geneticamente Modificados , Triglicerídeos , Yarrowia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lipase/genética , Lipase/metabolismo , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Triglicerídeos/biossíntese , Triglicerídeos/genética , Yarrowia/enzimologia , Yarrowia/genética
15.
Extremophiles ; 23(6): 659-667, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31338597

RESUMO

5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) overexpression, attempting to provide excess EPSPS to combine with glyphosate, is one way to improve glyphosate resistance of plants. The EPSPS in extremophiles which is selected by nature to withstand the evolutionary pressure may possess some potential-specific biological functions. In this study, we reported the cloning, expression and enzymatic characterization of a novel Class II EPSPS AroAT. maritima from Thermotoga maritima MSB8. The enzyme showed low sequence identities with other EPSPSs, and was one of the most thermostable EPSPSs so far, which showed the optimum enzyme activity at 80 °C. The enzyme maintains the activity below 50 °C and in a wide range of pH 4.0-10, which indicated its stability under rough environment, especially in tropical regions and alkaline soil. Excellent Ki/Km value of AroAT. maritima suggested that the enzyme showed powerful competitive binding capacity of PEP over glyphosate and high glyphosate tolerance. Furthermore, aroAT. maritima gene was transformed into Arabidopsis thaliana. The transgenic lines were resistant to 15 mM glyphosate, which proved the application value in the cultivation of glyphosate-tolerant plants.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase , Arabidopsis , Proteínas de Bactérias , Farmacorresistência Bacteriana/genética , Escherichia coli , Glicina/análogos & derivados , Microrganismos Geneticamente Modificados , Plantas Geneticamente Modificadas , Thermotoga maritima , 3-Fosfoshikimato 1-Carboxiviniltransferase/biossíntese , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/genética , Glicina/farmacologia , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Thermotoga maritima/enzimologia , Thermotoga maritima/genética
16.
Metab Eng ; 55: 239-248, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31344452

RESUMO

Poly-γ-glutamic acid (γ-PGA), which is produced by several Bacillus species, is a chiral biopolymer composed of D- and L-glutamate monomers and has various industrial applications. However, synthesized γ-PGA exhibits great structural diversity, and the structure must be controlled to broaden its industrial use. The biochemical pathways for γ-PGA production suggest that the polymer properties molecular weight (MW) and stereochemical composition are influenced by (1) the affinity of γ-PGA synthetase for the two alternative glutamate enantiomers and (2) glutamate racemase activity; hence, the availability of the monomers. In this study, we report tailor-made γ-PGA synthesis with B. subtilis by combining PGA synthetase and glutamate racemase genes from several Bacillus strains. The production of structurally diverse γ-PGA was thereby achieved. Depending on the PGA synthetase and glutamate racemase origins, the synthesized γ-PGA contained 3-60% D-glutamate. The exchange of PGA synthetase changed the MW from 40 to 8500 kDa. The results demonstrate the production of low-, medium-, and high-MW γ-PGA with the same microbial chassis.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Engenharia Metabólica , Microrganismos Geneticamente Modificados , Ácido Poliglutâmico , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Ácido Poliglutâmico/biossíntese , Ácido Poliglutâmico/genética
17.
Appl Biochem Biotechnol ; 189(2): 498-510, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31053997

RESUMO

Empirical modeling the partition behavior and recovery of a recombinant Pseudomonas putida POS-F84 proline dehydrogenase (ProDH) in aqueous two-phase systems (ATPS) was carried out by response surface methodology (RSM). Polyethylene glycol 1000 (PEG-1000) concentration, sodium carbonate concentration, and pH, which were the most important factors, were chosen for modeling the partition feature of enzyme. The adequacy of the models was investigated by means of variance analysis. Also, to confirm the efficiency of the ATPS in partition and purification of recombinant ProDH, purity and enzymatic activity was studied. After numerical optimization, an optimal ATPS composed of 14.33% PEG-1000 and 11.79% sodium carbonate at pH 7.48 was achieved. Yield, purification factor, and recovery were 81.41%, 60.82, and 270.82%, respectively. Purified recombinant ProDH was found as a single protein band into the upper PEG-rich phase and the specific activity was calculated to be 46.23 ± 2.1 U/mg. Collectively, our data showed that the RSM could be an appropriate and powerful tool to define the best ATPS system for recovery and purification of P. putida ProDH.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Microrganismos Geneticamente Modificados/enzimologia , Prolina Oxidase/isolamento & purificação , Pseudomonas putida/enzimologia , Proteínas de Bactérias/genética , Carbonatos/química , Concentração de Íons de Hidrogênio , Microrganismos Geneticamente Modificados/genética , Polietilenoglicóis/química , Prolina Oxidase/química , Pseudomonas putida/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
18.
Metab Eng ; 54: 200-211, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31009747

RESUMO

The core metabolism for glucose assimilation of the soil bacterium and platform strain Pseudomonas putida KT2440 has been reshaped from the native, cyclically-operating Entner-Doudoroff (ED) pathway to a linear Embden-Meyerhof-Parnas (EMP) glycolysis. The genetic strategy deployed to obtain a suitable host for the synthetic EMP route involved not only eliminating enzymatic activities of the ED pathway, but also erasing peripheral reactions for glucose oxidation that divert carbon skeletons into the formation of organic acids in the periplasm. Heterologous glycolytic enzymes, recruited from Escherichia coli, were genetically knocked-in in the mutant strain to fill the metabolic gaps for the complete metabolism of glucose to pyruvate through a synthetic EMP route. A suite of genetic, physiological, and biochemical tests in the thereby-refactored P. putida strain-which grew on glucose as the sole carbon and energy source-demonstrated the functional replacement of the native sugar metabolism by a synthetic catabolism. 13C-labelling experiments indicated that the bulk of pyruvate in the resulting strain was generated through the metabolic device grafted in P. putida. Strains carrying the synthetic glycolysis were further engineered for carotenoid synthesis from glucose, indicating that the implanted EMP route enabled higher carotenoid content on biomass and yield on sugar as compared with strains running the native hexose catabolism. Taken together, our results highlight how conserved metabolic features in a platform bacterium can be rationally reshaped for enhancing physiological traits of interest.


Assuntos
Escherichia coli , Glucose , Glicólise/genética , Microrganismos Geneticamente Modificados , Periplasma , Pseudomonas , Escherichia coli/enzimologia , Escherichia coli/genética , Glucose/genética , Glucose/metabolismo , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Periplasma/enzimologia , Periplasma/genética , Pseudomonas/enzimologia , Pseudomonas/genética
19.
Metab Eng ; 54: 24-34, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30831267

RESUMO

Microbial production of plant specialised metabolites is challenging as the biosynthetic pathways are often complex and can contain enzymes, which function is not supported in traditional production hosts. Glucosinolates are specialised metabolites of strong commercial interest due to their health-promoting effects. In this work, we engineered the production of benzyl glucosinolate in Escherichia coli. We systematically optimised the production levels by first screening different expression strains and by modification of growth conditions and media compositions. This resulted in production from undetectable to approximately 4.1 µM benzyl glucosinolate, but also approximately 3.7 µM of desulfo-benzyl glucosinolate, the final intermediate of this pathway. Additional optimisation of pathway flux through entry point cytochrome P450 enzymes and PAPS-dependent sulfotransferase increased the production additionally 5-fold to 20.3 µM (equivalent to 8.3 mg/L) benzyl glucosinolate.


Assuntos
Vias Biossintéticas/genética , Escherichia coli , Glucosinolatos , Engenharia Metabólica , Microrganismos Geneticamente Modificados , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glucosinolatos/biossíntese , Glucosinolatos/genética , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Sulfotransferases/genética , Sulfotransferases/metabolismo
20.
Pest Manag Sci ; 75(4): 1014-1023, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30221452

RESUMO

BACKGROUND: Dialeurodes citri is an important pest in citrus-producing areas of the world. Lecanicillium attenuatum parasitizes D. citri and kills it, suggesting a potential approach for the biological control of pests. However, the low virulence of the fungus and its slow rate of killing have limited its commercial competitiveness. The objective reason for these disadvantages is immunological rejection by the host. Our strategy was to use fungi to express the double-stranded RNA (dsRNA) of the host immune genes. The fungal hyphae release siRNA at the time of infection, thus interfering with the expression of immune genes in the host and facilitating fungal invasion. RESULTS: We selected prophenoloxidase (DcPPO), prophenoloxidase-activating factor (DcPPO-AF), and lysozyme (DcLZM) as target genes to construct intron-splicing hairpin RNA expression vectors and to successfully obtain transgenic fungi. Two days after infection, the immune genes of D. citri showed varying degrees of silencing compared with those in the positive control group. The median lethal concentration (LC50 ; spores mL-1 ) values of La::GFP, La::DcPPO, La::DcPPO-AF, and La::DcLZM were 9.63 × 104 , 2.66 × 104 , 1.21 × 105 , and 3.31 × 104 , respectively. The 50% lethal time (LT50 ) values of these fungi were 5.15, 3.60, 5.34, and 4.04 days, respectively. The virulence of La::DcPPO and La::DcLZM increased 3.62- and 2.91-fold, respectively, and their LT50 decreased by 30.10% and 21.55%, respectively. CONCLUSIONS: The results indicate that this method, which uses tens of thousands of hyphae to inject dsRNA to improve the virulence of transgenic fungi, can play a greater role in the prevention and control of pests in the future. © 2018 Society of Chemical Industry.


Assuntos
Hemípteros/microbiologia , Hypocreales/fisiologia , Proteínas de Insetos/genética , Controle Biológico de Vetores , RNA de Cadeia Dupla/genética , Animais , Catecol Oxidase/genética , Catecol Oxidase/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Hemípteros/enzimologia , Hypocreales/enzimologia , Hypocreales/genética , Controle de Insetos , Proteínas de Insetos/metabolismo , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/fisiologia , Muramidase/genética , Muramidase/metabolismo , RNA de Cadeia Dupla/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...